Running ZAP Attack Proxy on Jenkins

This tutorial will explain how easy you implement ZAP Attack Proxy into Jenkins. Therefor we create a Freestyle job and will use the “Official OWASP ZAP Jenkins Plugin“. That you can follow and reproduce the tutorial, you need a running Jenkins instance with SSH access to it and proper system rights (OS, Jenkins).

Install ZAP Attack Proxy

Following steps needs to be done when SSH connection, to Jenkins, is established.

Note: If you don’t restart Jenkins after creating “ZAPROXY_HOME”, you will run into trouble like “java.lang.IllegalArgumentException: ZAP INSTALLATION DIRECTORY IS MISSING, PROVIDED [ null ]”

Install needed Jenkins PlugIn’s

Search for “OWAS ZAP” and for “HTML Publisher” plugins.

Jenkins Plugin OWASP ZAP
Official OWASP ZAP
Jenkins Plugin HTML Publisher
HTML Publisher

Configure Jenkins Freestyle job

All what we need is there, we can start to setup a Jenkins “Freestyle project” with the name “ZAPAttackProxy”.

Create new Jenkins Freestyle Project
Jenkins Freestyle Project

The next setting is optional… I recommend to find your own value (I go with 5 for that example).

Discard old builds
Max # of builds to keep

On every build (Jenkins job run) the workspace should be clean. Please enable the checkbox.

Delete workspace before build starts
Delete workspace before build starts

We add now the build step. This build step is available because of the PlugIn “Official OWASP ZAP“.

Add build step Execute ZAP
Build step: Execute ZAP

Now we have many fields to configure. We start to set the values for section “Admin Configurations”.

ZAP Admin Configuration
Admin Configuration

As we already installed ZAP and created the entry into /etc/environment, we can now use that variable.

ZAP Installation Method
Installation Method

For ZAP Home Directory we add the path to the workspace and let the build create the directory “.ZAP”. For Session Management we choose “Persist Session” and give filename “my_session”.

ZAP Home Directory and Session Management
Home Directory & Session Management

Under section “Session Properties” you add the Context Name “default” and for “Include in Context” you can add IP’s and/or Domains. For that example I choose “http://scanme.nmap.org/*”.

ZAP Session Properties
Session Properties

In section “Attack Method” you can choose different attack methods like Spider Scan and so on. Please set always a “Starting Point”. The settings here are self explainable.

ZAP Attack Method
Attack Method

Enable checkbox “Generate Reports” in section “Finalize Run”. Now enter a filename and select “XML” and “HTML” format.

ZAP Finalize Run
Finalize Run

Note: You can ignore the HTTP 404 error.

We are done! To provide on our job dashboard a link for HTML report, you can use now the HTML Publisher.

ZAP Publish HTML reports
Publish HTML reports

Execute the job and play with “Attack Methods”…

Nessus on AWS

Nessus is a vulnerability scanner from Tenable. In this tutorial I will show how you can install Nessus on AWS (Debian), how you connect your local browser and perform a simple network scan. You need only a AWS account (eq Free Tier), SSH and a web browser.

Note: Please have a look on that page about pentesting on AWS first.

Create new EC2 instance

Login into your AWS console (or use AWSCLI), create a new SecurityGroup with SSH port 22 only (inbound) and launch a new instance. Search for “Debian”…

AWS EC2 Debian 9
Debian 9 on AWS Maretplace

Press button “Select” and finish all needed following steps (save your keys). After your EC2 instance is ready check for IP or DNS and connect.

Install Nessus

Open download page and select latest version for Debian (as I wrote this tutorial it was Nessus-8.5.1-debian6_amd64.deb). Confirm and download. Via SCP, in new terminal, you can upload the file to your EC2 instance.

Back to instance terminal … Now install and start Nessus.

Use Nessus

To make our life easier, we will create a simple SSH port-forward.

Now you can open your favourite browser with URL: https://localhost:8834.

Nessus Initialization
Initialisation of Nessus

When the initialization has been completed successfully, login and create a new scan. Select “Basic Network Scan” and add URL: http://scanme.nmap.org. Select “Basic Network Scan” and “Port scan (common ports)” for scan settings. Save and start your created scan. Please be patient, the scan will take a while.

Nessus scan
Running Nessus scan

Create a scan report

After a while, the scan is complete. Now you can create a “Custom” report. BTW … feature is only available for completed scans. So select “Export” – “Custom” and generate the report.

Nessus Report
Create custom HTML report

Apache Guacamole

Apache Guacamole … What is it about? It’s a client-less remote gateway for Telnet, SSH, RDP and VNC. Client-less, because there is no need to install any plugin or additional software for users (clients). The client will use just the browser (also without any plugin). In this tutorial we will create a very simple environment via Vagrant and use Guacamole. Why the tutorial? Because I know a lot of testers for example – who work with Windows, who are not allowed to install any software (eq Putty) but still need access to environments. … Next point are for example public security groups on cloud providers. Here only one port would be needed to support different protocols on different hosts (incl. file transfer).

What we need?

Project preparation

Okay, via your favorite editor you now add the content of all files. All files inside directory “src” are configuration files (installed on Guacamole host).

This file (user-mapping.xml) is the configuration for all your connections.

The ShellProvisioner.sh includes all installation and configuration for Guacamole All examples are provided but for Debian RDP is currently not working and I commented out.

Usage

First start-up the environment (via simple Vagrant command) and next start the VNC inside the box. You can do via vagrant ssh or you start the VNC via Browser (SSH).

Now login with “USERNAME/PASSWORD” (see src/user-mapping.xml) on http://localhost:55555/guacamole. If everything works it should look like this:

Guacamole on browser

Please have a look here https://guacamole.apache.org/doc/gug/index.html to learn more about configuration and authentication. All files which we used in this tutorial are available via https://github.com/Lupin3000/GuacamoleExample.

Simple VPN via WireGuard

This tutorial will show how to setup a simple test environment via Vagrant and to install, configure and use WireGuard VPN software. In this tutorial Debian 10 is used, you can find the documentation about other OS on WireGuard website.

Preparation

First make sure VirtualBox and Vagrant are installed in latest versions. Now create needed project and files.

Usage

All files are created and we can start to start the environment.

For box 1 (host-a)

For box 2 (host-b)

Important is that your ports and keys will be different and be patient before start ping each other – have fun…

Little SonarQube tutorial

In this tiny tutorial, I would like to introduce SonarQube usage. I will show the usage of SonarQube Server via Docker and will give some hints about the SonarQube Scanner. Therefore we create three very simple example files (html, css and javascript).

Requirements

Prepare your project

Okay,… first we start the Docker container for SoanrQube and create all necessary folders and files for our project.

Content of created files:

Download sonar-scanner

You need to download the SonarQube Scanner by your self. You will find it here incl. all important informations.

Note: At this point you could also move the scanner files to the right place and create a symbolic link. I will skip that step and use the path to binary.

Execute sonar-scanner

If not done till now, open SonarQube in your browser (http://localhost:9000) and login with admin/admin.

You should now be able to see the result of the scan in SonarQube.

SonarQube Scan Results

Analyzing the scan from command line

To see the results in SonarQube is perfect but now we will try to get them in our command-line.

Simple Jenkins pipeline on AWS (Part 3)

Okay,… The pipeline has already two steps “Build” and “Deploy” running, but the last step “Test” is missing. In this part I will show a simple example with Python, Selenium and Docker (standalone-chrome) for test step.

Preconditions

Install additional packages on AWS EC2

There is a need to install additional packages on AWS EC2 Linux instance (Jenkins).

Create new files and folder (Project/Repository)

You need to create a new directory called “test”. Inside that directory you will create a file “example.py” with following content.

When you are done you have to modify the “Jenkinsfile” and the bash script “test.sh”.

Ensure that “example.py” has all needed permission rights. $ chmod +x example.py Commit all changes now and wait that the Jenkins job gets triggered (or trigger manually).

jenkins trigger with parameters

That’s already all… your job should execute all steps. This part is done super fast. 😉

Some last words

There is a lot of space for improvements here, but I think you learned already much and had some fun. Some hints now:

  • you can add any other test methods by your self on this step (eq. Performance- and Security tests)
  • Unit tests and Static Code Analysis could executed on build step (before create image)
  • check out AWS ECS Services
  • use a proxy for Jenkins and enable SSL
  • create other pipelines and ECS clusters to enable staging
  • create “Lifecycle policy rules” on ECR
  • use Git Webhook’s to trigger the Jenkins jobs
  • add a post step in your Jenkins pipeline to store metrics and/or inform about build status

Simple Jenkins pipeline on AWS (Part 2)

In previous tutorial I showed you how to create the environment and how to implement the build steps for Jenkins pipeline. Now I will show you to setup the deploy step.

Preconditions

AWS ECS Cluster

Create a very small AWS ECS cluster in region “Frankfurt” (eu-central-1). Therefore enter Amazon ECS Clusters and press button “Create Cluster”.

AWS ECS create cluster

Select template “EC2 Linux + Networking” and continue to next step.

AWS ECS cluster template

On section “Configure cluster” you give a name like “ExampleCluster”.

AWS ECS configure cluster

On section “Instance configuration” select “On-Demand Instance”, “t2.micro”, “1”, “22” and “None – unable to SSH”.

AWS ECS instance configuration

In the section “Networking” you have to be careful now. Your values ​​will be different from mine! Under VPC, select the same value as for the EC2 Jenkins instance (I selected default VPC). Now you can choose one of the subnets. We created the security group together with the EC2 Jenkins instance, so select “ExampleSecurityGroup” here.

AWS ECS networking

Okay, press button “Create” and wait till the cluster is created. The cluster creation can take a while, so please be patient.

AWS ECS Task Definition

The cluster is running and the “Task Definition” can be created. So press button “Create new Task Definition”.

AWS ECS task definition

Select “EC2” on page launch type compatibility and press button “Next step”.

AWS ECS task launch type

On section “Configure task and container definitions” set value “ExampleTask” for input field “Task Definition Name” and for “Network Mode” select “<default>”.

AWS ECS task definition name

On section “Container Definition” press button “Add Container”. A new window will slide in. Here give the “Container name” value “ExampleContainer”, add under image your latest version from ECR (my latest is 24). Set values “128” for “Memory Limits (MiB)”, “80:80” for “Port mappings” and press button “Add”.

AWS ECS task add container

You are done with your task definition configuration, scroll down and press button “Create”.

AWS IAM

Before we can go through the next steps, we need to adjust the group policy for “PipelineExampleGroup”. You must add the “AmazonECS_FullAccess” policy. _For our example this is okay, but never use this policy in production!_

AWS ECS IAM

Run task on ECS cluster (via Jenkins)

Now you only need to modify two files in your repository. Replace the content of “deploy.sh” and “Jenkinsfile” with following contents.

Commit your changes and wait for build trigger (or trigger manually). After successful deployment, your ECS cluster will have a running task now. On section “Container” you can see the link.

AWS ECS cluster task container

Every time when you modify files and commit them into your Git repository, the pipeline will be triggered and latest version will be visible in browser.

That’s it with this part of the series. Cu soon in next part.

Simple Jenkins pipeline on AWS (Part 1)

This tutorial serie should enable you to create own pipelines via Jenkins on AWS. Therefore we try to catch all needed basics with AWS IAM, EC2, ECR and ECS. Some of our configurations are recommended only for learning purpose, don’t use them on production! Why? Because these lessons are for people who starts on these topics and I will try to make all steps/configuration as easy as possible without focus on security. In this part we will create the environment and setup the “build step”.

Preconditions

  • AWS account (eq. free tier)
  • Git account (eq. GitLab, Bitbucket, GitHub, etc.)

AWS IAM

The first preparation you do on AWS IAM Management Console. Here you create and configure a new group. The benefit of this group is that you can reconfigure the policies for assigned users easily at anytime. Please name the group “PipelineExampleGroup”.

AWS IAM group name

Now search for EC2 Container Registry policies and enable checkbox for “AmazonEC2ContainerRegistryPowerUser”. For our example this policy is enough, but for production please don’t do that!

AWS IAM group policies

After the group is created, a user needs to be assigned to this group. Name the user “PipelineExampleUser”. Please enable checkbox “Programmatic access” for this user.

AWS IAM user name

Assign the user to group.

AWS IAM user group

Before you finish the process, please choose Download .csv and then save the file to a safe location.

AWS Jenkins EC2 Instance

Now you can launch our EC2 instance. Do this on region “Frankfurt” (eu-central-1). Of course you can choose any other region, but please remember your choice later. At very first step select the template “Amazon Linux 2 AMI (HVM), SSD Volume Type”.

AWS EC2 AMI

The instance type “t2.micro” is enough for our example. For production you will need something else – depending to your needs.

AWS EC2 instance type

Now you need to be a little bit careful. On Instance Details step please select “Enable” for “Auto-assign Public IP” and “Stop” for “Shutdown Behavior”. For all other values the defaults should be fine. I select my default VPC and “No preference…” for Subnet.

AWS EC2 instance details

15 Gb disk space are fine. For production you need to estimate differently.

AWS EC2 instance storage

With the tag you will have it easier to identify the instance later on console view. Enter values “Name” for “Key” and “Jenkins” for “Value”.

AWS EC2 instance tags

Create a new security group with name “ExampleSecurityGroup” and allow ports 22, 80 and 8080 (IPv4 only). You can change the configuration at any time later. On a production environment you should use other ports like 443 and IP restrictions.

AWS EC2 instance security group

Create a new key pair with name “ExampleKeyPair”. Don’t forget to save the key (“Download Key Pair”) and press “Launch Instances”!

AWS EC2 instance key pair

Install and run Jenkins

The EC2 instance is running and you can connect via SSH to start all needed installations and configurations. Attention: Your Public IP/DNS will be different (also after every stop/start), via button “Connect” you can easily figure out your configuration. I will just use the term “<EC2 IP|DNS>” in my description.

AWS EC2 connection

Note: I have a space after etc, because of security settings of my provider.

Do not close the SSH connection yet. Start your browser and following there the Jenkins installation steps. The URL is similar to your SSH connection – http://<EC2 IP|DNS>:8080. You should see the following screen and paste the initial password there.

jenkins screen initial password

On next screen press button “Install suggested plugins” and wait for the screen to create administrator account. Fill in your credentials and finish the installation steps. The remaining configurations (on browser) will be made later.

AWS ECR

Before you can push images to ECR, you need to create a new repository. On the ECR page, choose button “Create repository”. Your AWS ECR console screen could look a little bit different.

AWS ECR repositories

Give a repository name “example/nginx” and press button “Create repository”.

AWS ECR repository configuration

Done, your ECR repository is already created. You can see on overview page all needed informations like Repository name and URI. Your repository URI will be different to my. I will just use the term “<ECR URI>” in my description.

AWS ECR repository overview

Okay, now enable user jenkins to connect to ECR. Go back to terminal and execute following steps. You need now the credentials from downloaded csv file for “PipelineExampleUser”.

Git Repository

I assume that you are familiar with Git. You must now create a Git Repository and create the following folders and files there. I will use my own private GitLab repository.

Content of files in root folder:

Content of files in cicd folder:

Note: Please set permission rights for shell scripts like $ chmod +x build.sh deploy.sh test.sh

Inside folder “dev_credentials” I store the credentials.csv from AWS. The content of this folder will be only on my local machine, because via .gitignore I exclude the folder and files from git.

Jenkins job configuration

I will not use this tutorial to explain security topics for Jenkins, so we start directly with the configuration of the job (resp. project). On main page press now button “New item” or link “create new jobs”. Insert name “ExamplePipeline”, select “Pipeline” and press button “OK”.

jenkins new job

To save some disk space enable checkbox discard old builds (5 builds are enough).

jenkins job discard old builds

Normally you would create a webhook to trigger the build after commit, but our EC2 instance does change the public IP/DNS on every stop/start. That’s why here we check the revision changes every 5 minutes on git and trigger the job if something has changed.

jenkins job build trigger

Add the repository (may credentials are needed), configure the branch and Jenkinsfile path.

jenkins job scm pipeline

Press button “save”, _cross fingers_ and trigger manual the build. If you did nothing wrong, the job will run without issues and the ECR contains your images (depending how often you trigger the build).

AWS ECR repository images

The next part of this tutorial series will be about deployment to ECS.